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This paper deals with the approximation of Vlasov—Poisson and
Vlasov—-Maxwell equations. We present two coupled particle-finite
volume methods which use the properties of Delaunay-Voronoi
meshes. These methods are applied to benchmark calculations and
engineering problems such as simulation of electron injector devices.
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1. INTRODUCTION

it 1s well known that the coupled particle-finite difference
method is the most usual tool for the approximation of the
Vlasov—Poisson and Vlasov-Maxwell equations (for exam-
ple, see [1-2]). Unfortunately this method does not really
suit arbitrary polygons whose boundaries are not parallel to
the axis. Furthermore, it is not easy to vary the mesh size of
indented polygons.

In order to overcome these difficulties we present two
coupled particle-finite volume methods using unstructured
meshes. More preciscly we will assume that £ is covered by
a Delaunay mesh [3], which is always possible [4-5].
Algorithms for generating such meshes have been developed
in [4-9]. Then some geometrical properties of Delaunay
and Voronof meshes will be used for the approximation of
Maxwell equations by two finite volume methods [16]. The
Delaunay—Vorenoi meshes have been used in such diver-
sified arcas as electromagnetics [17-18], semi-conductor
physics [19-20], or hydrodynamics [21-22]. For finite
difference or finite volume methods solving the Maxwell
equations the reader is referred to [23-267]. For other
methods such as conformal or mixed finite element and edge
element methods see [27-307.

The boundary conditions, stability criteria, application to
the wave equation, and generalization to the 3D case will be
detailed. Furthermore, we will introduce two finite volume
methods for the approximation of the Poisson equation and
we will study how the Gauss law can be taken into account

when the charge and current densities result from particle
calculations.

Some numerical results concerning benchmarks, which
permit comparisons between the exact solution and the
approximated one, or engineering problems such as injector
devices will be presented. Computing various injectors wiil
lead us to propose a direct method for the Child-Langmuir
current calculation.

2. MAXWELL EQUATIONS
Given a 2D vector field V: R2 > R, weset V=(V_, V)

and ¥ = ¥,. Then the Maxwell equations in S.1. units can be
written as

¢B
—+ 1ot E=0
ot
JE 1
E'—C l'OtB——aoJ (])
1
divE=—
v 60,0
and
JB
—+rot E=90
ot
1
a—E-—czrotB=——J (2)
ot £
divB=0.

The differential operators are defined in Appendix 1. Let
us recall that p is the charge density, J is the current density,
¢ is the velocity of light, and ¢ is the vacuum permittivity.
These values are coupled with the magnetic permeability p,
by the relation: gqpec?=1.
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2 F. HERMELINE

We assume that initial electric and magnetic fields E° and
B® are such that:

, 1 .
divE’=—p" and divB"=0.
&0

Let '=17,w i, be the boundary of Q. Regarding the
boundary conditions we consider:

E-t=0 s 0
stem
E.-t—cB=0 y
and
E=0 s
ystem 2)
E+cB-1=0

For [, we recognize the perfect conductor boundary
condition. For [, we have chosen the following simple
modei:

— the outgoing electromagnetic waves which
propagate normally to the boundary I" can leave freely 22
without being reflected (or equivalently are absorbed at
boundary)

— incoming normal waves are allowed to enter Q.

3. DELAUNAY AND VORONOI MESHES

In this section we recall briefly some properties of the
Delaunay and Voronoi meshes. For more details see
[3-5, 10-13].

Let x,, ... x, be n points of the plane, not all colinear.
With each point x; we associate the Voronoi polygon (V.P.)
V; defined by

Vi={x, 1< j<ndx, x,)<d(x, x;)}.

It can be proved that V,, .., ¥, are convex, nonempty
interior polygons and that they fit together to fill the whole
plane without overlapping, Therefore they make up a mesh
of the plane which is called the Voronoi mesh. With each
vertex v of one V.P. we associate the convex hull of points
among x,, .., x, which have v as one of the vertices of their
associated V.P. Tt can be proved that these so-called
Delaunay polygons (D.P.)} fit together without overlapping
to fill the convex hull of points x,, ..., x,. Therefore they
make up a mesh which is called the Delaunay mesh.
Furthermore each D.P. D is inscribed in a closed ball which
does not contain any point x, .., X,, except the vertices
of D. This last property characterizes the Delaunay mesh.

In the following we will assume that polygon @ is covered
by a submesh of one Delaunay mesh whose vertices have

been suitably chosen in 2. By adding some boundary ver-
tices in case of need it is always possible to obtain such a
mesh and algorithms in order to generate it have been
developed successfully (see [4-9, 12]). Let us remark that a
D.P. or a V.P. may have an arbitrary number of sides. In
practice the D.P. will be triangles or rectangles. Typical
examples are displayed on the Fig. 1. Other examples can be
found in [4, 3, 311].

- & &

—® & ® @ —
e
%--@--*h--@-——l—-é——-{—— :

DELAUNAY MESH

®---® -- @ - -®  VORONOL MESH

FIGURE 1
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A remarkable property of Voronoi and Delaunay meshes
is that a unique perpendicular side of one mesh can be
associated to each side of the other (see Fig. ). This is
what will make these meshes so attractive for finite volume
computations.

In the following index ¢ () will be assigned to the V.P.
{D.P.). Consequently it will also be assigned to the vertices
of D.P. (internal vertices of V.P.). Index k (/) will be
assigned to the sides 615 (8D]) of V.P. (D.P.).

Let us denote:

— N, (W) the number of sides of V.P. ¥/, (D.P. D))

— A;{4;)thearea of V.P. ¥, (V.P. D))

— L} (L)) and L} (L)) the length of internal side V¢
(side dD?) and its associated side of D.P. (internal side
of V.P.)

vi(viyand ] (t}) the unit outward to V¥ (8D’) and
the unit tangent along 8V (9D)).

If the sides @V} and 0D are associated we have:
k_ 5l ' __ 1Tk, k __ Ik {
Li=L;, L;=L%, Vi= T, T =V,

Lastly, let v(i, k) (v(j, 1)} be the number of the unique

DELAUNAY MESH

®---® --&@® - -® VORONOI MESH

FIGURE 2

V.P. (D.P.) which is adjacent to ¥, (D) regarding to its & (/}
the side. If 8Dj. is a boundary side, »(j, /) will denote the
number of the V.P.’s vertex which coincides with the middle
of side aD! (see Fig, 2).

4. TWO FINITE YOLUME METHODS FOR
THE MAXWELL EQUATIONS

In this section we present and study two finite volume
methods for the cartesian 2[> Maxwell equations (the cylin-
drical 2D case is treated in Appendix 2 and the cartesian 3D
case is treated in Section 8). These methods generalize the
classical finite difference method to arbitrary unstructured
Delaunay meshes. The basic idea is to use the fact that
the Delaunay and Voronoi meshes are orthogonal. The
boundary conditions, stability criteria, and application to
the wave equation will be studied,

4.1. Approximation of the Maxwell Equations

Consider, for example, Maxwell equations (1} (System
(2) is treated in Appendix 3). Integrate the second equation
(Ampere law) along side of D.P. aDj and integrate the first
one (Faraday law) over V.P. V, and the third one (Gauss
law) over D.P. D,. We obtain

a(r ) i X
— B+ E-t;=0
3I(Jv, iy ravk '

By exchanging the role played by the Delaunay and
Voronoi meshes we obtain

a N
E(J‘D, B)+ Z LDjE-tj=0

=1

i, 1
— E-vi] ¢ VB.tf= — J.vF
6!( art v') ¢ J’JV"-‘ o £g LV:‘ Vi

i
Ny

I
R I

k=1 LV

Suppose that:

— for each V.P. ¥V, (resp. D.P. D,) B is a constant
B;=(1/4)) jv, B (resp. Bj= (I/A;) jD). B)
— along both associated sides 8V and 3D!, E-vi=
E-1f (resp. E-vf = —E-t}) is a constant also denoted by
E-vi=E 1 (resp. E-vi = —E.1).

4
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Thus we have

B A
A,a—~+ )j LYE -t =0 (3)

L’k(E VI B iy — B)—ﬁlJ‘ Jvi @

) ODj
B
Z LE.v J i (5)
r=1 80 b;
(resp.
28,
A—"’+2L’E =0 (6)
d 1
k_ﬁ_ . ky __ a2 . - — A Ic
LG E VDB = By= | IvE ()
< sk i |
Y LYE v =—j o). (8)
k=1t €0 ¥

Suppose that the discretized charge conservation law

%([ )+ ZILDJ-V;=0 ©)

(resp.

(10)

alle)r 2 4 =0)

is satisfied. Then, as for the continuous system (1), the dis-
cretized Gauss law (5) (resp. (8)) is a consequence of the
discretized Ampere law. This is the first advantage of both
methods. A second one is that we obtain two linear diagonal
systems of differential equations which can be ecasily
integrated by classical methods such as the explicit second-
order leapfrog scheme. A third one is that both methods
generalize the finite difference method which can be deduced
from Egs. (3)-(5) or (6)-(8) by replacing the D.P. by rec-
tangles (in this case the V.P. are also rectangles, see Fig. 1).

Comparative numerical results are provided in Sec-
tion 9.1. The second method seems more accurate but we
are not yet able to assert that one method must be used
rather than the other. However, the stability criterion is
more convenient for the first method, due to the fact that the
length of D.P.’ sides cannot be small (see 4.3).

4.2. Boundary Conditions

For the sake of simplicity we will assume that the vertices
of V.P. are in the domain £2. The discretized Faraday law (3)
(resp. (6)) requires the calculation of the integral of E . 1%
(resp. E-t{j along 0V, N I (resp. 6D, n I"). Now if ¥, (resp.

D;) i1s a boundary V.P. (D.P.) this integral cannot be
evaluated from the discretized Ampere law and we have to
use the boundary conditions.

Suppose that 8V, I" (resp. 0D, I'} is included in [).
The perfect conductor boundary condition yields

E-t*=0 on 8V;nFl
(resp.
E-t/=0 on ép;nr).

Suppose that ¢V, I {resp. 6D, I") is included in 77,
and let L] (resp. L)) be the length of AV,n I (resp.
oD, 1I"). Since B is a constant B, {resp. B,)in ¥, (resp. D)),
the integration of the boundary condition

E-t—cB=g

along 8V, I (resp. 8D, I") yields

LVMFE-T—CL?B,:LVNg (11)

(resp.

E-t—cLB=| g). (12)

Jr?D_,r‘\F “aDim I

The application of the discretized Faraday law (3)
(resp. (6)) to ¥V, (resp. D,) provides

a8,

A, —+ Y L¥E.if + =0 13
6: kgl t J'aV,hI' . ( )
k¢l
(rcsp.
B,
4,4 Z LE-t/+ E-t:O). (14)
= any

é

By replacing (11} (resp. (12)) in (13) (resp. (14)) we
obtain the differential equation

3B,
A cLTB + Z L¥E 1" +j g=0
a k=1 aVvim I
k¢l

(resp.

B,
+cLFB+ZLfE o+ g=0)
a I=1 a1

1¢r

which allows us to calculate B, (resp. B,).
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4.3. Stability Criteria

Suppose that differential equations (3) and (4). are
mntegrated by the leapfrog scheme and that J=0. We have

N;
Bn+l/2 Bn—l,‘Z t Z L En
Fk=1
, At
En+l V _En V +C L£ (Bn+1/2 Brg(?é,}?)

Let £¥ be the error between the approximated electric field
component E” - tf and the exact one. We have

Bn+ 1/2 __ Bn—l/l

M N
S LEETa

Pk=1

'__ Z Ll 1!

!m—l

hence
En+1_v[_En' I+ 2£(Bn+1/2_Bn+1/2)+ 1
TRV e ‘ n;j

i i v(ik)
LJ

with

'?f zdtz 1 (1 % Lmem 1
;= T\ T [
4 Lj‘f A;

im=1

L(J' k)
Z Lu(. i, k])

v{i,k) m=1

From this relation a sufficient criterion in order that the
error does not increase exponentially is

Nu(ik) 172
Z Lu(r ff})) <l

v(ik} =1

Lo
¢ dt 728uP ZZ S

J m=1

Concerning the error between the approximated
magnetic field component B7*'7Z and the exact one, a

similar analysis yields
1 MopENI2
c At (—— Z %) < 1.
Ai k=1 Lf‘

The numerical experimentation confirms the validity of
these criteria. In the case of an orthogonal grid, path Ax,
they become

Atl
Ax2

We observe that this condition is a little more restrictive
than the well-known stability criterion

Consider now differential equations (6)
analysis leads to the criteria

and (7). A similar

1 1 % 1 ’“fzf“ 2 (15)
cdr( sup(— Lr, —— Ly )) <1 (15
Lk A,fm:] ! Av(j”m—] D

and

(16)

12
CA!( zéj) <1
ey L

In this case these criteria are too restrictive since the
length LY = L{ of a V.P.’s side may be as small as possible.
If there is a V P.’s side whose length L% = L’ is such that
criteria (15) or (16} are violated, the two D P’s D; and
D,y are replaced by the single polygon D, w D, . We
have

12 , M o !
L _pr—12 T L
Bj. = B; E LE" 1]
Sm=1
Nogj1y
n+1,:’2_ a—1/2 m
BLn = Bign A X LUaE
vl ff) m=1

By addition we obtain

+ 172 w172
A BT+ 4,0 BU 0

B ne 12 n+ 1/2
=A4;B + A0 Bu

Notjih)

_m(z LrE s S LT B

1 m=1
This relation suggests replacing B, and B,;,, by the new
degree of freedom,

ﬁj,1= (Aij_}_Av(j,n')Bu(j,!))’

A;+ Ay

which satisfies the relation

Bn-)— 1/2

=B V- (Z LYE"-1]

A+ Ay

m=1

m
v(,"J) :

Note that we do not need degree of freedom E” -t/ which
can be suppressed. Since the lengths Li=L* cannot be
small, this precaution is useless for the f rst fimte volume
method,

Ny

+ Z Lv(j:’)
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4.4. Application to the Wave Equation

By eliminating E-tf=E.v] (resp. E-ti= —E-v})
between Eqgs. (3) and (4) {resp. (6) and (7)), we have

é’B, Noopk
A=+ Y - (Bi—
o it LF

v(rkl)__ Z j

(resp.

Ny L"

c? z _[ Bj By(;n)—_ofz J.aD' )
=1

623
A,
4 g

We obtain two finite volume approximations of the wave
equation:
o°B 1
— ¢’ AB=—rotJ
Gt £

which has been integrated over the V.P. (resp. D.P.).
Similarly, by eliminating B, (resp. B,) between Egs. (3)
and (4) (resp. (6) and (7)) we have

(3', 1 - m k
’8! s (E-v))— Z—ZL‘-E-t‘-

im=1

1 Nuti k)
oy L k]E'TT[f.k))

vli k) m=1

BQ aD" 51‘ 1
(resp.

1 o
7 (E V) — (I > LTE-1}

tar el
1y aF
u(j,i)) ;) Vkﬁ?-\’;).

We obtain two approximations of the equation:

p o Mwn

Z Lv(ﬂ)

vl d) =

OE 14aJ
a7 +c*rot(rot E) = ——;E

which has been integrated along the sides of D.P.
{resp. V.P.). Thus the maxwell equations considered as
wave equations are also approximated by the finite volume
methods described in 4.1.

5. TWO FINITE VOLUME METHODS FOR
THE POISSON EQUATION

This section aims to present and study two finile
volume methods using Delaunay—Voronoi meshes for the
approximation of the following model Poisson equation:

1
—Adp=—yp in Q2
£ .
p=F on I
v-Vo=g¢g only.
Integrate over a V.P. ¥, such that i ¢ I", (resp. D.P. D,). We
have
Ni Ni ]
vV — =—
k=1 ’[an ! (P g ﬁng SOJ‘V,J(J
k¢TI kel
(resp.

Ny 1
vi-Vo— g== p).
rga '[ Igl éﬂf O'I.Df

1¢ I lel

For each V.P. ¥, (resp. D.P. D;} assume that ¢ is a con-
stant denoted by ¢, (resp. ¢,). From the approximations,

1
V:-C'V(Pzg(q’uu,k]_@f) a7)
(resp.
. 1
\«‘j-V(P:E,((pu(j.I)-(pj) ’
i
we obtain
i L‘: ] Lf
Y = (oi—oum)+ ) AL
K= Lk k=1 Lj
kel v(i,kye I
Ny & N
&o V;-p k§1 Li—‘f('kl kgl ‘ng (
oli k) e M kel
(resp.
N Ll "VJ' L
L 2ot L 2o,
=1 L, I=1 LJ
1¢T .'e!’l
J’ p+ Z _Ifuur]"' ZJ. ) (19)
.55_131 ! "Efz

Thus we obtain two linear systems of equations whose
associated matrix [ 4] = (a,,) is symmetric, irreducible and
such that

Ypa,,>0

- VP app’z.a#q La.wl

— 3psuchthata,,>Y, ., la,,
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From these properties it follows that [ A} is positive definite
{for example, see [32]).

If the elements of mesh are triangles we remark that the
matrix of system (18) is the same as the one we should
obtain by a piecewise linear finite element approximation.
Method (19) is a new method which has been introduced
in [16, 22].

In order to solve these linear systems we have used the
Cholesky factorization: comparative numerical results are
provided in 9.2. An another efficient method is the diagonal
preconditioned conjuguate gradient method which has been
used when the initial guess is closed to the solution (see 6.3).

6. APPROXIMATION OF THE COUPLED
VLASOV-MAXWELL EQUATION

In numerous problems the charge density p and the
current density J are computed from the particle
approximation of the distribution function f in the phases
space. Let m and g denote the mass and charge of particles,
we have

p=qudv, J=q5vfd1).

Under the noncollisional assumption the function f is
solution of the Vlasov equation:

F
Y v i+ L (E+vxB)V, S =0,
ol 1

This equation ‘is classicaly approximated by the particle
method. Let us recall that the particle method yields a weak
approximation f of f as a linear combination of Dirac
functions (see [33-347). In the nonrelativistic cartesian case
we have

e pvg,v0,,0.,0)

= ¥ wfd(x—x"(1)) 5(y— y7(1))

r=1

x 3~ vE(r)) 8(v—v8()) Blo—v2(1)),  (20)

where N is the number of particies, w” is the weight of par-
ticle p, x,(t} = (x?(s), p*(£)) and v?{1} = (v2(?), 02(2), vP(2)}
are the position and velocity of particle p. The functions
x?(r) and ¥?(t) are solutions to the equations of motion:

dx”_ivp
dr
dv? g
T (EP+vPx B,
Frid m( TvIxBY)

From (20) we obtain the following weak approximations
of pand J:

w?d(x—x*(1)) 6(y — y*(1))

1

plx, p, 1) =
P

:

(21)

.T(x, y, )=

P

w? ¥P(1) 8(x — x(1)) 6(y — yP(1))-

1

(22)

Three difficulties arise when we couple the particle
method with the fintte volume methods described in
Section 4.1:

(1) the computation of the electromagnetic field
(E*, B*) acting on particie p

(2) the computation of the flux of the current density J
through the sides of V.P. (or D.P.)

{3) the fact that the discretized charge conservation law
(9) or (10) is not necessarily exactly satisfied.

These three items will be dealt with in the next three
paragraphs. For the sake of simplicity we will assume that
all D.P. are triangles.

6.1. Fields Interpolation

The electromagnetic field is interpolated by piecewise
tinear functions. In order to approximate the magnetic field
component B at the ith vertex of the mesh from the degrees
of freedom of the first (resp. second) finite volume method
we set

. 1
Bi)=B= J,,‘ B
(resp.
Bii)=

ZJ-EJ,.A,-BJ-)
Z;’GJ‘- Aj ’

where J; is the set of D.P. whose i is a vertex,

In order to approximate the electric field E from the
degrees of freedom E-tf =FE v/ (resp. E-v{ = —E 1) we
use the least squares method. Therefore E{(i) is the value
which minimizes the function:

FAV)= S (Votb-E.tiy

k=1

(resp.

Fv)=§

k=1

(V-vf—E-vf.‘)z).



8 F. HERMELINE

6.2. Computation of Current Density Fluxes

The current density J is also interpolated by piecewise
linear functions. Let ¢, be the piecewise linear function such
that

V_,-": (Pt(.])zag
We set

Jo.
o= tele:

From the particle approximation (22) we deduce:

30) =ZNE=1 A (Pi(xp).

.o (23)

From this piecewise linear interpolation of J we can easily
calculate the fluxes:

j Jovi  or J. J-vi
an;’ v

Another way of computing these values consists in setting

Fovimt [T g LYo ()
W= Vi=—Y w

/ AIL; (— a2 "D} / AtL}pst

or

3 B 1 .~+Ar,f2J- J A
Y, =— vV, =—
! At Li{ j,_du‘z HV{-‘ ! At Lf

2 o,

pe Pl

(25)

where P (P¥) is the set of particles which have crossed the
side @D} (V') between times 1 — A1/2 and ¢ + A1/2.

6.3. Poisson Correction

Let us assume that the charge density p is the piccewise
linear function which interpolates the values:

pliy=3%. fpf(x")/ | o (26)

p=1

Unfortunately the discretized charge conservation law (9)
or (10) is not exactly satisfied when the piccewise linear
approximations (23) and (26) are used. We deduce that the
discretized Gauss law is not a consequence of the discretized
Ampere law anymore. In order to avoid accumulating
errors it is necessary to correct the electric field at any time
by adding the gradient of potential ¢ such that

. 1
diviE—Vg) == P
0

Therefore we have to solve:

1 . .
—Ap=—p—divE in 2

g
=0 onf.
From the previous finite volume approximation (18)
(resp. (19)) and since E - v} (resp. E - v}) is a constant along
aV'y (resp. 6D!) we obtain

> 4 y L
— (9:— @iy + = 0
k=1 Lf k=1 Lf
kgl v(ik)e

1 7
== p~ Y LEE.v*
eojv,p El {E-v;

{resp.
Ny A N {
L Z2lei—eunt X 2o
1=1L; =1 L;
té v(j el
N
LY L;E.v;.).
£y Y p; I=1

In order to solve these linear systems it is convenient to use
iterative methods such as the diagonal preconditionned
conjuguate gradient method because the initial guess
{potential at the previous time) is closed to the solution. The
numerical experimentation confirms that few iterations are
needed (see [30]) Similar results have been presented
in [35].

Once these linear systems are solved the former values
E - v} (resp. E-v!) of the ¢lectric field are replaced by the
new corrected values:

1
E- Vf + E (p,— (Pu(i./q)

¢

(resp.

1
E- vj, + E-' ((PJ_‘ (pu(j.f)))'
j

On the other hand, the discretised charge conservation
law (9) or {10) is clearly satisfied if the approximation {24)
or (25) of the current density fluxes are used. In this case
the discretized Gauss law remains a consequence of the
discretized Ampere law and we do not need to correct the
electric field. This would be a decisive advantage but it is
known that approximations (24) or (25) provide noisy
resuits, especially in the case of plasma computations, and
they have not been yet implemented.
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7. THE CHILD-LANGMUIR CURRENT
CALCULATION

Simulation models of various physical systems such
as particle injectors require accurate computation of the
Child-Langmuir current density of electrons emitted
through the cathode. The aim of this section is to present an
algorithm for computing this current density without using
the Child-Langmuir law. Of course we shall use the coupled
particle-finite volume methods which has been described.

Let us consider the following Vlasov—Poisson model
equation:

af e
—_ .V —V . =
6t+v f+m -V =0

F(x,v%0)=0 in

—A(p=—ijfdv in Q
&

0

=0 on the cathode I,

P=@, on the anode.

We make the basic assumption that the net current
density at the cathode is space charge limited and hence
calculated from the supplementary boundary condition:

v-Vp=0 on the cathode I).

This assumption is equivalent to the one used in the
Child~Langmuir model (see [36]) with the advantage of
being local and applicable to any geometry. For example,
integrate the Poisson equation over a D.P. ¥, which inter-
sects I, and assume that

ve

‘

Vo= (99;:({.&) — ;).

Lk

Since @, =0 and v¥ - Vg =0 along I';, we have

L 1
Z l—l(l’u(.'.k)=,__[ D. (27)

k=1L'f Eo vy
kel

In order to take into account the supplementary cathode
boundary condition v.Vg =0, relation (27) suggests the
following algorithm:

— Given N" particles, weight «w”, positions x” at time
n A1, the charge density p" is computed.

— From p” the Poisson equation yields ¢”.

— From (27), a prediction Q7 , of the charge which
must exist in ¥, for the supplementary cathode boundary
condition to be ensured is then

N o1k

"o i

fp= 0 2, =5 Putekr
k=1 LJ-
k¢l

— The actual charge Q7 in V;is computed:

— Both charges Q] , and Q} , are compared with intent
to compute the charge Q7 which must be added through
aV,~ I, at time n AL

;=0
Q7=07,— 0l

it Q7,1 <190

otherwise.

— The additional charge Q7 is distributed among N
new particles which are randomly set on &V, ;. Their
velocities are computed from the cathode temperature.

— The old particles are moved according to the equa-
tion of motion in the self-consistent electric field and the
new particles are moved according to their initial velocities.

— The new charge density p”*' is computed.
This algorithm can be generalized easily to full Maxwell
equations. For theoretical results regarding the convergence

of such a similar algorithm to the Child-Langmuir current
density we refer to [37].

8. GENERALIZATION TO THE 3D CASE

Let £ be an arbitrary 3D polyhedron. Suppose that Q is
covered by Delaunay and Voronoi meshes and let us
denote:

— 8 (éD!) the kth ({th) face of V.P. ¥/, (D.P. D))

— @Vyr (DY) the rth (sth) edge of the kth (/th) face
of V.P. V,(D.P. D))

— N, (¥,) the number of faces of V.P. ¥, (D.P. D))

—  N¥ (NY) the number of edges of face vk (6Dj)

— A¥ (4!} the area of face 8V (D))

— LPT(L%) the length of edge 3V (V)

—  vF{v}) the unit outward normal to ¥ (6D}) and ="
(%) the unit tangent along edge oV (2D}°).

We remark that a unic_luc perpendicular edge of D.P.
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(V.P.) can be associated to each face of V.P. (D.P.) (see¢
Fig. 3). Consider the 3D Maxwell equations in S.I. units:

‘B
—+rotE=0
ot
’E
—_szt]}:_-l-.]
6:‘ Eon
i
VE< L
div Sﬂp
divB=0.

Integrate the first (resp. second) equation over a face of
V.P. @V} (resp. D.P. 4Dj) and integrate the third (resp.
fourth) one over a D.P. D, (resp. V.P. ;). From Stokes and
Gauss theorems we obtain

2(1,v1) 5 f B

r=1

a 4 1
! 2 Ls .
Fy E-vi)—c Y JBrrt=——} J]
aD; s=1"80 bp Yam;

B-vi=0.
kgl LV:‘ ) v

Assume that

— along both face V% and its associated perpendicular
edge 0D, B-vi=B-t}° is a constant also denoted by

B.-vi=B .1/
—— along both face D and its associated perpendicular
edge oV¥, E-vj=E-1:f‘r is a constant also denoted by

E.vi=E-t}"

~4

———— - a-——a

DELAUNAY MESH

@ - - @— @ VORONOT MESH
FIGURE 3

Then we have

N
A’,f%(B-v’{}+ Y LYE.f =0 (28)
r=1
a {
A= (E-v)—-¢ Z LyB.tp=——| J.vi  (29)
6 =1 80 61)
Nj l
AE -vi=— 30
T Ak SOL,.P (30)
N;
3 AB-vi=0. (31)

k=1

If the discretized charge conservation law

8 N
E(L,p)Jr,; JaDjJ vie

is satisfied, Eq. (30) is a consequence of (29) and is not to be
considered. Similarly Eq. (31) is a consequence of {28).
Thus we obtain a linear diagonal system of differential
equations which can be integrated by classical methods such
as the leapfrog scheme.

By exchanging the role played by the Delaunay and
Voronoi meshes we obtain a2 second finite volume
approximation of the Maxwell equations. As we have seen
in the 2D case these methods generalize the finite difference
method (also cailed Yee’s method, see [23]) to arbitrary
Delaunay meshes.

The unique drawback of such methods is that they need
a Delaunay mesh of polyhedron £2. Such meshes have been
already generated but this remains a chailenge to conceive
an algorithm which works for any arbitrary polyhedron (see
[4.5,7,8]). In order to overcome this difficulty it is
possible to use modified finite volume techniques which can
be applied to nonorthogonal staggered meshes (see [267).

9, NUMERICAL RESULTS

In this section we present numerical results involving the
Poisson and Maxweil equations or the coupled Vlasov-
Poisson and Viasov—Maxwell equations.

S.1. Eigenmodes of a Square Cavity

Let € be the unit square. Positive integers m, n and
frequency w are given such that

w=ne(m? + nf)2
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The electromagnetic field, Bix, y, 0) = cos(x mx) cos(n ny)

E(x, »,0)=0 in Q.
B(x, y, 1} = cos(n mx)} cos(nm ny) cos(wi) E.t=0 onl
¢ .
E(x, y. 1) :W(—” cos(m mx) sin(m ny), We have chosen m=n=1 (hence w=133x%x10"s""),
. T=40ns, and A:=20ps. Two kinds of mesh have been
m sin(n mx} cos(s ny)) sin(wt), tested (see Fig. 4):

— a regular orthogonal grid which is made up of 2500

is the solution to the Maxwell equations, squares such that Ax = Ay =2 em

— an unstructured Delaunay mesh which is made up

@+ otE=0 of 5520 triangles and which coincide with the former along

ot the boundary (due to the mesh generation algorithm the

OE in Q2x[0, 7] symmetry is not necessary to obtain good results).
—_— 2 = . . .
Ot c“rot B=0 Figure 4 shows the error between the analytic solution and
10-4 10-4
o. 0-15 '_"“'"_]’__'"_T"—'"”f—"_‘"
0.
.10 —
0.
0. 0.05
0.00 i 0.00 | 1 i
0.00 0.10 020 0.30 0.40 0.00 0.10 0.20 0.30 0.40
10T TIME 10-7 TIME
10-4
0.08
0.06
0.04
0.02
i 0.00 | | |
0.00 o010 020 030 040 9o o010 020 030 040
10-7 TIME 10-7 TIME

FIGURE 4
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approximated cone for both finite volume methods described B{r.z,0)=0
. . in 2
in Section 5. E(r,2,0)=0
Method (18) Method (19) B=0 )
on the z-axis
Structured mesh 496 x 10~* 500 1078 E-v=0
Unstructured mesh 333x10°¢ 505x10-¢ E.t=0 onT,
where
9.3. Radiation from a Dipole EINENUN
Let £ = [0, 0.5] x [ -0.5,0.5] and consider the cylindri- I(r, 2, )= (0’ (1 —— % ) sin(aw! ))
cal Maxwell equations:
2
it Osrégand (P +22) <R
¢B
5‘;+YO‘E=0 J(r,z, 1}=0 otherwise.
in 2x{0,T]
JE | 1 We have chosen T=3ns, At=5ps, w=>5n10"s"",
——crot B=——1J . .
ot LN R=4cm. Two kinds of mesh have been tested (see Fig. 5);
z UNSTRUCTURED MESH
R
1ns ins
2ns 2ns
ans 3ns

FIGURE 7
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— a regular orthogonal grid which is made up of 5000
squares such that Ar=4dz=1c¢m

— an unstructured Delaunay mesh which is made up of
9480 triangies and which coincide with the former along the
boundary (due to the mesh generation algorithm the
up—down symmetry is not necessary to obtain good results).
Figures 6 and 7 display the computed contour plot of the
electromagnetic field components E,, E_, B, for times 1 ns,
2 ns, 3ns with both finite volume methods described in
Section 4.

Similar results have been obtained in the cartesian case
(see [38]).
9.4. Numerical Simulation of a Thermal Cathode

Let us consider the Pierce gun [39] defined by Fig. 8. Let

v2 — 142
pP= ( 1 — ;;E:) v

be the velocity momentum. This Pierce gun is governed by
the cylindrical relativistic Vlasov—Poisson equations:

a-f+v-vf+£{qu—va)-fo
ot m

=0 in 2x[0,T]
fir,z,v,,v.,0)=0 inQ

A= _ﬁffdv inQ
. EO

=0 on the cathode
@ =g  onthefocusing electrode
0=, on the anode

v:-Vo=0 on the z-axis

rot B= — ey, f vfde  in.

We have chosen @ =15x10°V, ¢, ,=3x10°V,
T=4ns, 4t=10ps, and the cathode temperature is
2000°K. We have used the Delaunay mesh of Fig. 8 which
is made up of 9174 triangles whose size is 4z = 2 mm on the
z-axis. We have entered 100 particles per time step.

The computed Child-Langmuir current is 911 A
Figure 9 shows the electrons in the pipe and the computed
contour lines of the potential and azimuthal magnetic field.
For such static case computations using coupled particle
finite difference or finite clement methods see [4041].

9.5. Numerical Simulation of a Photo-Injector

Consider the model photo-injector defined by (see
Fig. 10):

Z(m)

EEs

BEAM
PIPE

0.2158 ¢

FIGURE §

— a plane cathode (C), area 1 cm?, emitting a bunch of
photo-current

— a R.F. cavity (RF) which gives an electric field EX
such that
E®F(r, z, ) = Eqo(1 + az?) cos? (g i) cos(w! + @)
Zp

if 0%2@20

ERF(r,z,1)=0 otherwise
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POTENTIAL

ELECTRON BEAM ATINUTHAL MAGNETIC FIELD

t=4.ns t=4.ns

t=4.ns

FIGURE %

(such an analytic expression is a crude fit of the TM01 mode
calculated by a standard eigenmode code used for the R.F.
cavity)

— & beam pipe (BP)

~— a magnetic lens (ML) which gives a magnetic field
BML such that

B
BMi(r, z) = —29(1 +cos (n
BMY(r,z)=0

2z—2,—12, .
—_— if z;€z2<€2,
Zz“ZI

otherwise.

(this expression intends to approximate crudely the field
given by a real coil with magnetic core; a more sophisticated
approximation could obviously be used as needed).

We have chosen E,=15x107V/m, B,=008, 0.1,
0.12T, a=270m 3 z,=10cm, z,=3cm, z,=22cm,
w="9073 10®s ', and ¢ = 0. From the equations

divER =0

and div BML =0,

we deduce the analytical expression of £*F and BM",

581/106/1-2

BEAM PIPE

WAGHETIC LENS

0.07 ¢+ 5

R-F CAVITY

-

| R (m)

&Y,
oA AT
I hwqga

TN AVAVAVAVAVAVLY
RRRORO00R
NSRRSIA

FIGURE 10

Furthermore, we will assume that BXT =0, where the
beam is present (r small). Let

p2\ —172
p=(1—;) ¥

denote the velocity momentum. This photo-injector is
governed by the cylindrical relativistic Vlasov—Maxweil
equations:

af

Y vV - L (E+ERF 4 vx (B+BME)
ét m

V,/=0 in @x[0,T]
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flroz, 0,09, 0,,0)=0 in Q2
éB
—+rotE=0
1
B
—+rot E=0
ot

oK 1
—+c2rotB=——.|-vfdv in

ar 2 2x[0,T]

dE I
_ 2 = ——
6t+c rot B EDJvfdv

B(r,z,0)=0
B(r,z,0}=0

in Q2
E{r,z,0)=0
E(r,z,0)=0
B=B.v=0

on the z-axis.
E=E-v=0

We have chosen 7'=2 ns and 41 = 10 ps. We have used
the Delaunay mesh of Fig. 10 which is made up of 7541

F. HERMELINE

z
I_‘R
0.60 0.80 0.60 0.60
00T 0.087 01T 0.12T
0.40 .40 0.40 040~
}
»
0.20 0.20 0.20 020
— —
0.00 0.00 0.00 0.00
10nc 560ps
0.60 0.680, 0.80 0.80
0.0T 0.08T 01T ] 0127
0.40 0.40 0.40 0401~
)
0.20 0.20 ©.20 020§
!
0.00! 0.00 0.00 0.000———
10nc  100ps
FIG. 11. Space time evolution of the electron bunch under various

conditions.

0.2ns 0.8ns 14ns
L< 0.4ns 1.0ns 1.6ns
0.6ns 12ns 1.8ns

__&n\'l’ >

FIG. 12. Contour lines of the azimuthal magnetic fietd.

10nc 100ps

01T

«101

1.50 1 T

i

1.00 7541 TRIANGLES 30164 TRIANGLES -
£ Az -2.mm Azel.mm

E (ON THE Z-AXIS) {ON THE Z-AXIS)

&
g

050 -
0.00 ] l
0.00 0.20 0.40 0.60

FIG. 13. Influence of the mesh size on the beam envelope.



TWO COUPLED PARTICLE-FINITE VOLUME METHODS 17

triangles whose size is 4z =2 mm on the z-axis. We have
entered 15 particles per time step. The total bunch charge is
10~% Cb with durations 50 ps and 100 ps.

Figure 11 shows the electrons in the pipe for time 0.2 ns
to 2 ns by step 0.2 ns under various physical conditions.
Figure 12 shows the computed contour lines of the
azimuthal wakefield. Figure 13 shows the influence of the
mesh size on the beam envelope (the finest mesh is obtained
by dividing each triangle in 4). For such computations using
coupled particle-finite element methods see [30, 421.

10. IMPLEMENTATION

Both finite volume methods described in paragraph 4
have been easily vectorized. The vectorization of the particle
method on unstructured meshes is a little more difficult
(see [307]).

Comparison was done with a fully vectorized particle-
finite difference code. On a CRAY-XMP type computer the
cost of the particle pusher of both codes is about 10 us per
particle and per time step (including assignment and inter-
polation). The cost of the finite volume code is about 15 us
per grid point and per time step {including the Poisson
correction which has not been yet vectorized). This cost is
several times higher than for the finite difference code in
terms of us per grid point but, due to the unstructured mesh
versatility, the number of grid points is much lower, so the
total cost 1s about the same.

11. CONCLUSION

We have shown that both coupled particle-finite volume
methods described in this paper are very suited to
approximate the Vlasov-Poisson and Vlasov-Maxwell
equations on arbitrary complicated polygons. Numerous
advantages have been brought to light. On the other hand,
the unique requirement is the need for using Delaunay and
Voronol meshes, which is not a constraint anymore in the
2D case. The application of these methods to various
engineering problem has given quite satisfactory results for
a cost which can be compared with that of the classical
particle-finite difference method. Furthermore both finite
volume methods have been generalized to arbitrary physical
mediums without any difficulty.

APPENDIX 1

We recall the definitions of some cartesian and cylindrical
2D differential operators.

Cartesian geometry Cylindrical geometry

u=ulx, y) u=1u(r, z)

du du
V“’(EEB_}')
ot u = ﬁ 5_u
otu= ay  x
A ‘.-62“_’_62“ A —li J‘% +@
M ay? ra\Ta ) TR

V=(Vx.p), V\(x, )

aV, av, 1é av,
vV == L ivV=-—(rF I+ —=
divV o + P div i rv) =
av, av, av, arv.
=g ¥ tV=o—d——=
rotV ay * ox ro dz  ar
AV=(4V_, 4V ) AV:—-(AV, ZV,,AV)

APPENDIX 2

Consider for example Maxwell equations (1). In the
cylindrical case the finite volume formulation is

o Nf
5 (L,B)—k; .[ME-tf=0

a ! 2 {_ ! {
E(J‘w}rE-vj)+c LD}’V(rB)-tjﬁ—— rd.v;

£ /
0 aDJ

Qr

é o

g Bl— E-t/=

at (J'Dj ) ;z‘l oD, /
2(] ,E.vk)HZI V(rB) th=—— [ rdovE
ot avt ! avk Eg Yyt

N; 1
Y J rE-vf=-j rp.
K=1"0V] Eo 7w

APPENDIX 3

The space discretization of Maxwell equations (2) by the
finite volume methods described in Section 4.1 provides the
following linear diagonal systems of differential equations:
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é
L; _t (B- Vj-) —Eyinnt E.=0

and

_ Ni ]
A,»—ai’;—’fc2 > LiB-tf=——| J
5! b=1 80 Vi

Ny
E] L'B-vi=0
L"i(B-v"]-I-E —E=0
i 6t i vl j, 1) J
OE, Y 1
ALy pRai= [ g
4 6! ¢ lgl 4 TJ 50 Dj
N
Y L“B-v¢=0.
k=1

As for the continuous system (2), the last equation is a
straightforward consequence of the first one and does not
have to be considered.
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